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We present a novel spatiotemporal saliency model for object detection in videos. In contrast to previous 

methods focusing on exploiting or incorporating different saliency cues, the proposed method aims to 

use object signatures which can be identified by any kinds of object segmentation methods. We integrate 

two distinctive saliency maps, which are respectively computed from object proposals of an appearance- 

dominated method and a motion-dominated algorithm, to obtain a refined spatiotemporal saliency maps. 

This enables the method to achieve good robustness and precision in identifying salient objects in videos 

under various challenging conditions. First, an improved appearance-based and a modified motion-based 

segmentation approaches are separately utilized to extract two kinds of candidate foreground objects. 

Second, with these captured object signatures, we design a new approach to filter the extracted noisy 

object pixels and label foreground superpixels in each object signature channel. Third, we introduce a 

foreground connectivity saliency measure to compute two types of saliency maps, from which an adap- 

tive fusion strategy is exploited to obtain the final spatiotemporal saliency maps for salient object detec- 

tion in a video. Both quantitative and qualitative experiments on several challenging video benchmarks 

demonstrate that the proposed method outperforms existing state-of-the-art approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The human vision system is able to select visual information of

nterest and ignore the rest in its visual field. This mechanism is

emarkably helpful for humans to focus quickly on objects of im-

ortance in a complex scene rapidly. Visual saliency studies have

ained much attention in the passed few decades owing to its wide

ange of applications such as image segmentation [1] , image retar-

eting [2] , image cropping [3] , video compression [4] , video ob-

ect segmentation [5] , and video object detection [6,7] . The stud-

es originate from the task of detecting regions of interest where

n observer may fixate [8] , In this work, we address the issue of

alient video object detection. Detecting salient objects in videos

cquired under uncontrolled imaging conditions remains to be a

hallenging task. 
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Salient object detection, in both still image and video, aims to

dentify foreground objects from the background. It is based on

he assumption that objects are usually distinctive in color, tex-

ure, motion, pattern, etc., compared to the background [9,10] . The

utput in one frame is a saliency map, where each value represents

he probability of its corresponding pixel belongs to the salient ob-

ect. Those pixels with high probability are identified as potential

bjects. 

Detecting salient object in video is a difficult problem due to

he challenges like how to integrate the motion cues with the spa-

ial cues, how to deal with the problem if one or some adjacent

rames are static, and how to tackle the case when the motion fea-

ures are not available. Furthermore, in reality, an acquired video

ypically is under the influence of additional complicating factors

ike intensity variation and shadowing due to illumination changes,

ast object and large background motion, cluttered background, etc.

ill now, there are a few methods have been presented to consider

he afore-mentioned issues for spatiotemporal salient object detec-

ion in a video [5,6] . 

Except for the saliency-based technique, some other methods,

hich aim to efficiently detect and localize video objects in di-

erse content, have been investigated [11,12] . For example, the
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motion-dominated fast object segmentation (FOS) scheme [11] and

the appearance-dominated block-sparse robust principal compo-

nent analysis (B-RPCA) technique [12] are two outstanding meth-

ods, although they also have their respective limitations when fac-

ing practical imaging challenges. 

Both the saliency-based and other kinds of techniques are diffi-

cult to tackle the complex realistic challenges jointly. Towards ad-

dressing various difficulties in a unified model, and taking best

advantages of the saliency technique and other kinds of object

detection approaches, we present a method for detecting salient

objects in videos by developing a saliency estimation framework

that fuses saliency maps from complementary appearance signa-

tures and motion signatures that are respectively extracted by im-

proved versions of state-of-the-art object detection algorithms in

the literature. Briefly, exploiting complementary object detection

methods which are able to extract object signatures efficiently and

accurately under complicated conditions is one critical task (see

Section 3 ). Appropriately fusing these signatures-derived saliency

maps for final salient object detection is another significant work

(see Section 4 ). The highlights of the proposed method are sum-

marized below. 

Firstly, to detect potential foreground object signatures robustly

in complex scenes, we consider two famous video object seg-

mentation methods: the FOS [11] and the B-RPCA [12] , although

the overall fusion idea works for more object segmentation meth-

ods, due to three reasons. (1) They are complementary, where

the FOS method is motion-dominated and the B-RPCA method

is appearance-dominated. (2) Both the FOS method and the B-

RPCA method are able to handle multiple complex conditions. (3)

Their segmentation results in videos are state-of-the-art. The FOS

method provides a reasonable baseline for segmenting foreground

objects from the background in videos. It is relatively reliable un-

der challenging conditions like the fast moving background, non-

rigid deformations, objects with arbitrary appearance and motion

types. However, the motion boundaries, which heavily depend on

the estimated optical flow [13–15] , usually do not correspond to

the entire object boundary, because the estimated optical flow

is typically very noisy, e.g, the flow is inherently inaccurate at

occlusion boundaries [16] . To handle this situation, we utilize a

learning method [16] to compute the motion boundaries. Further-

more, we incorporate one additional feature – the motion direc-

tion difference to further improve the learning performance, as

it is helpful when the object is moving in a modest speed [11] .

The appearance-dominated B-RPCA approach are able to address

various realistic challenges, e.g., background motions, illumination

changes, camouflage, etc, in a unified framework. But it is of low

efficiency. Besides, this scheme removes all the correct foreground

pixels if any frame is static, causing the B-RPCA to fail in detecting

any object in this case. To this end, we improve its motion saliency

estimation (MSE) in three aspects (to be elaborated later) to handle

these problems. 

Secondly, we compute different saliency maps from the appear-

ance and motion signatures derived from the previous step. After

obtaining those types of foreground object signatures, we design a

novel method to refine them by removing noisy foreground object

pixels and then label the foreground superpixels accurately in ev-

ery object signature channel. We employ the detected foreground

superpixels as object priors for a foreground connectivity measure

[10] so as to improve saliency detection in the respective channels.

In each channel, by using a principled saliency optimization tech-

nique, which integrates foreground weights and background mea-

sure [17] , a much more accurate and smooth saliency map can be

estimated. 

Finally, based on the estimated appearance-dominated and

motion-dominated saliency maps, we detect two category of re-

fined foreground objects by utilizing adaptive thresholding [18] . In
ach map, higher weights will be added to the places where ob-

ects are extracted in both saliency maps, while lower weights are

dded to those identified as backgrounds in both. Then, we fuse

hese two complementary maps using a novel object and saliency

uided fusion strategy to obtain a spatiotemporal consistent video

aliency maps, which is able to capture the final salient objects in

ach frame of the given video precisely. 

Compared to the existing methods, the main contributions of

his paper are: 

• Unlike existing methods that focus on exploiting low-level or

high-level features for refining saliency detection, in the first

time, we propose to use object signatures from complementary

video-based object segmentation methods to supply cues for

salient object detection in videos under various complex scenes.
• An efficient foreground superpixels labeling method, which de-

pends on the identified object signatures, is exploited to find

more accurate object labels to compute foreground weights for

saliency maps computation. 
• A learning-based method that combines various appearance

and motion cues is introduced to predict motion boundaries,

which are stable and helpful for foreground video objects de-

tection in complex scenes. 
• A novel fusion method, which depends on our object signature-

derived saliency maps and the refined object signatures, is pre-

sented to integrate saliency maps appropriately from different

channels to form a higher-quality spatiotemporal saliency maps

for final salient object detection. 

The remainder of the paper is organized as follows. We review

elated work in Section 2 . Sections 3 and 4 describe the frame-

ork of the proposed method. We report the experimental re-

ults with both qualitative and quantitative evaluation by compar-

ng to the state-of-the-art algorithms on four widely used bench-

ark datasets in Section 5 . Section 6 concludes the paper. 

. Related work 

Salient object detection in still image . Here the goal is to ex-

ract the most visual-attention-catching objects in a static scene

9,10,17,19] . Based on their mechanisms to represent the saliency,

hese techniques can be classified into two main categories: top-

own method and bottom-up method. The top-down methods

19,20] are goal directed, and some high-level priors are applied

o guide the detection. The bottom-up methods [5,9,10,21] are in-

ependent of the high-level knowledge of the image content, and

ocus on using low-level visual cues, such as texture, location and

ocal contrast to detect salient objects. Contrast priors are widely

pplied in such approaches. However, the contrast-prior-based ap-

roaches often fail to detect the objects in their entirety and are

nly good at identifying high-contrast edges. Some methods ex-

loited boundary priors [22] to enhance saliency estimation. But

he boundary prior is typically fragile and prone to failing [17] . In

ur approach, based on the availability of estimated foreground ob-

ects (and the background), we introduce a foreground connectivity

easure that employs both a contrast prior and a boundary prior

o improve the performance of saliency estimation. 

Salient object detection in videos . In this condition, motion plays

 dominant role on grabbing human visual attention in most

ideos. Accordingly, a motion is usually exploited as a temporal

eature and it provides the strong indication for the salient ob-

ects. In earlier years, salient motion detection approaches tried to

xtract moving objects as salient foreground regions [23] . More re-

ent approaches attempt to combine motion information with spa-

ial information. Some approaches first compute temporal and spa-

ial saliency map respectively, and then merge them with certain
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Fig. 1. The framework of the proposed method. 
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ules to produce a spatiotemporal saliency map [24] . In such a sim-

listic fusion strategy, the final spatiotemporal map may be easily

ontaminated by noise in either the spatial or the temporal map.

ome approaches simply extend the image saliency algorithms to

eal with video saliency by adding motion cues [7] . However, the

erformance of these algorithms is not very good, as they do not

odel well temporal saliency exhibited between video frames. 

. Object signatures detection 

Most of the current methods for detecting salient visual ob-

ects rely on various appearance or motion features and they may

erform poorly if the video contains multiple challenging condi-

ions [6] . The key idea of our approach is to utilize some ob-

ect signatures that can be extracted by any reasonably good ob-

ect segmentation methods, hence allowing multiple complemen-

ary channels of saliency maps to be estimated. To the best of

ur knowledge, this is the first to use complementary object sig-

atures from different video-based object segmentation algorithms

o guide saliency computation in videos. Fig. 1 outlines the general

ramework schematically. 

Two object signatures, which are captured by two video object

egmentation methods, are regarded in this work: we select the

otion-dominated FOS method and the appearance-dominated B-

PCA technique as the baselines. We further improve these base-

ines (elaborated below) to enhance their usefulness for our pur-

ose. 

.1. Object signature estimation with IFOS 

Using the method of [11] , objects can be efficiently and auto-

atically segmented in a video. This method includes two main

hases: initial foreground estimation and foreground-background

abelling refinement. The first phase is the key contribution, where

ixels inside an object are roughly identified according to motion

oundaries. In other words, the performance of the motion bound-

ry detection determines the success of the FOS method. We fol-

ow largely the FOS approach and detail our implementation and

mprovements below. 

Optical flow is the apparent motion of brightness patterns in a

ideo [13,25] , supplies the motion information of each pixel [14] .

e compute optical flow for each successive pair of frames based

n the method of [15] , which is able to handle large displace-

ents and has a fast implementation. We then estimate the mo-

ion boundaries based on the calculated optical flow. Two simple

eatures, i.e., the magnitude of the gradient of the optical flow ( Eq.

1) ) and the difference in direction ( Eq. (2) ), are applied in [11] to

stimate the motion boundaries. 

 

m 

i = 1 − exp (−λm ‖ ∇w i ‖ ) (1)

here i denotes a pixel position in the image domain. w = (u, v )
s the flow field, while u and v are the flow component in x - and

 -direction. B m 

i 
∈ [0 , 1] is the strength of the motion boundary at
ixel i, λm is a scaling parameter used to control the steepness of

he exponential function. 

 

θ
i = 1 − exp (−λθ max 

j∈ N 
(δθ2 

i, j )) (2) 

 

θ
i 

∈ [0 , 1] , δθ i, j represents the difference in direction between w i 

nd its neighbors w j . Then, these two measures are combined to

onstruct a more reliable measure: 

 i = 

{
B 

m 

i 
, if B 

m 

i 
> T 

B 

m 

i 
· B 

θ
i 
, if B 

m 

i 
≤ T 

(3) 

here T is a threshold. Finally, an empirical value T = 0 . 5 is applied

o B i in [11] to get a binary motion boundary. 

Learning-based motion boundary detection (LMBD) . To improve

he performance of FOS, we incorporate the LMBD method [16] to

stimate the motion boundaries in the first phase. Since the struc-

ured random forest (SRF) [26] leverages several cues – appear-

nce, motion, and confidence in motion at the patch level, the

MBD is more robust. Specifically, the SRF predicts boundaries at

he patch level, making the LMBD is robust to failures in the opti-

al flow. Besides, SRF learns the correlation between local features

nd motion boundaries, and thus textures in the background and

oundaries can be distinguished. Since the feature representation

t the patch-level includes several cues, the LMBD is able to detect

dges of the object in static frames. 

Improving LMBD . The success of LMBD depends on the selection

nd design of features. We further improve its performance by us-

ng a new feature: the motion difference in direction (see Eq. (2) ).

e use this feature as a new channel to construct a more effective

eature representation. The motion direction difference is helpful

or detecting boundaries of moving object, as the foreground object

nd the background typically go in different directions. The com-

arisons between our improved LMBD and the original LMBD are

isplayed in Figs. 2 and 3 . As shown in Fig. 2 , the motion bound-

ries of the girl can be completely captured by our method, while

any parts are missed in LMBD. The ROC curves in Fig. 3 also

emonstrate our improved LMBD due to the motion difference in

irection is effective. Fig. 4 (b) (top) shows the object segmentation

esults of our IFOS. 

.2. Object signature estimation with IB-RPCA 

Gao et al. [12] proposed a B-RPCA method, which imposes few

pecific assumptions to the background and only supposes that

ts appearance variation is highly constrained. The background can

e extracted according to a low-rank matrix. Mathematically, they

onsider the observed video frames as a matrix M , which is a sum

f a low-rank matrix L that denotes the background, and a sparse

utlier matrix S that consists of the moving objects. In this way,

ven the videos contain diverse challenges, the foreground mov-

ng objects can be accurately detected by solving the decompo-

ition according to the RPCA technique [27] . The B-RPCA method

as three main steps: (1) First-pass RPCA; (2) Motion Saliency Es-

imation (MSE); (3) Second-pass RPCA. We modify the second step
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Fig. 2. Results of LMBD [16] (left) and our method (middle) of sequence girl on the SegTrack v2 dataset. 

Fig. 3. Comparison of ROC curves on the SegTrack v2 dataset. 
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to improve the performance of the B-RPCA method in respects of

efficiency and accuracy as detailed below. 

Drawbacks : The MSE operation is effective to filter off or sup-

press the non-stationary background motions and identify the

foreground object that keeps moving spatiotemporally constant.

However, if the object incidentally stops or moves approximate to

zero, or if some video frames are static, all the foreground ob-

jects will be removed by the second step. Besides, the MSE is

low efficiency, especially when the background contains some non-

stationary motions, the computational time will increase exponen-

tially. 

Improving MSE . To handle these two issues caused by MSE, we

improve the MSE step in the following three aspects similar to Tu

et al. [28] : 

(1) We decrease the constraint of the trajectory length to 5

frames to reduce the time complexity. 

(2) To suppress the wrongly identified non-stationary motions,

we add a velocity angle constraint to the motion direction

consistency measure. Not only the negative or positive direc-

tion of the flow components u and v along the trajectory is

concerned, but also the variation in direction is considered.
Fig. 4. An illustration of our saliency estimation on the UCF-Sports dataset [31] . (a) On

IFOS (top) and IB-RPCA (bottom). (c) Identified foreground superpixels. (d) Computed for

computed foreground weights. (f) Saliency maps refinement. (g) A spatiotemporal salienc
The velocity angle measure is expressed as: 

� θ = arctan (u t+1 / v t+1 ) − arctan (u t / v t ) ∈ [ −π/ 4 , π/ 4] (4)

where ( u t , v t ) � = 0 denotes the optical flow of the current

time t . Same as the operation of motion direction consis-

tency, this measure is conducted at places where the veloc-

ity is no-zero along the trajectory (refer to the MSE conduc-

tion for detail in [12] ). 

(3) We explicitly consider the condition that objects stop or

slowly move. In this case, we do not perform the second

step and only execute the first step. To further remove the

wrongly detected foreground objects, we discard the small

size of motion coherent blocks. In general, salient foreground

objects has a non-trivial size. If the size of one block smaller

than τ (We set τ = 10 × 10 experimentally in this paper), it

can be regarded as the background. Fig. 4 (b) (bottom) dis-

plays the object detection results of our IB-RPCA method. 

. Saliency estimation 

After obtaining two types of foreground object signatures, we

ow apply the foreground connectivity method [10] to each chan-

el to compute two saliency maps. This is motivated by the good

erformance of this method, which considered different saliency

ues including contrast prior, boundary prior, and foreground prior.

ts most important foreground prior can be effectively computed

ccording to our detected foreground candidates. Besides using

he presumably better foreground prior, we further improve the

ethod of [10] in the following two aspects. 

.1. Labeling foreground superpixels 

In one previous work, Srivatsa and Babu [10] used objectness

roposals which are identified according to BING [29] to compute

n objectness map. Then, a rough estimate of foreground is ob-

ained by thresholding the objectness map, and superpixels that

re part of the foreground are accordingly captured. Since the ex-

racted foreground in [10] is rough, the captured foreground super-

ixels are not precise. Our detected foreground objects are much

ore accurate, and thus in each frame, to identify whether a su-
e frame of the input video. (b) Detected foreground object signatures by methods 

eground weights. (e) Saliency estimation based on detected object signatures and 

y map by the proposed fusion strategy. 
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erpixel belongs to the foreground, we present a measure as: 

 P n ← oP n > η · nP n (5)

here P n ∈ P denotes a superpixel. nP n represents the number of

ixels belong to a superpixel region R. oP n denotes the number of

verlapped pixels between the superpixel region R of P n and our

etected foreground objects. η is a ratio parameter ∈ [0, 1]. FP n 
 FP represents a superpixel which is identified as belong to the

oreground. Generally, if more than half region of a superpixel lo-

ates on our detected foregrounds, we will label this superpixel as

elonging to the foreground, i.e., FP n . In the paper, we set η = 0 . 55 .

he SLIC algorithm [30] is utilized to abstract each video frame

nto superpixels. 

.2. Foreground connectivity 

In this step, a robust saliency measure called foreground con-

ectivity is employed to assign saliency values based on superpixel

onnectivity to the identified foreground. An undirected weighted

raph is constructed by using superpixels as nodes. All adjacent

uperpixels ( P n , P m 

) in the image are connected and the weight

f d ( P n , P m 

) is set as the Euclidean distance between their mean

IE-Lab values. The geodesic distance between any two superpixels

 geo ( P n , P m 

) is calculated as the accumulated edge weights along

heir shortest distance on the graph [17] : 

 geo (P n , P m 

) = min 

P 1 = P n ,P 2 , ... ,P l = P m 

l−1 ∑ 

i =1 

d(P i , P i +1 ) (6)

here l is the number of superpixels along one path of two super-

ixels ( P n , P m 

). The foreground connectivity of a superpixel P n is

efined: 

 

GC 
(P n ) = 

∑ N 
k =1 d geo (P n , P k ) · δ(P k ) ∑ N 

k =1 d geo ( P n , P k ) · (1 − δ(P k )) 
(7) 

here δ( ·) is 1 if a superpixel is identified as foreground superpixel

y Eq. (5) , and N is the total number of superpixels. Same as [10] ,

e also take the reciprocal of F GC and apply it as the foreground

eights w 

fg : 

 

f g (P n ) = 1 /F 
GC 

(8)

q. (8) computes foreground weights for all superpixels. In general,

he foreground weight of a superpixel should be assigned to zero

f it is not detected as foreground: 

 

f g (P n ) = 0 , ∀ P n / ∈ F P (9)

e find that a superpixel who is not detected as the foreground

ccording to Eq. (5) but with high w 

fg value, is also located on the

oreground. This is due to the detected foreground objects by IFOS

r IB-RPCA are not perfect. Some foreground objects or some parts

f an object are not extracted. We reset a superpixel to the fore-

round if it satisfies: 

 2 (P n ) ← w 

f g (P n ) > median (w 

f g (F P )) (10)

here F 2 ( P n ) ∈ F 2 P denotes a detected foreground superpixel. me-

ian is an operation, which computes the median value of the fore-

round weights of the captured foreground superpixels according

o Eq. (9) . 

We find that if a superpixel has a very low w 

fg value, even if it

s identified as a foreground superpixel based on Eq. (5) , it should

e set to zero. This is because some noises in the background are

rongly detected as foreground objects in IFOS and IB-RPCA. We

etect the background superpixels roughly based on w 

fg , which is

xpressed as: 

B (P n ) ← w 

f g (P n ) < median (w 

f g (P )) (11)
here RB ( P n ) ∈ RBP denotes a superpixel roughly identified as be-

onging to the background by a small threshold. 

We detect the incorrectly captured foreground superpixels in

q. (5) as following: 

 (P n ) ← (P n ∈ F P ) ∧ (P n ∈ RBP ) (12)

here B ( P n ) ∈ BP denotes an identified background superpixel.

hen, we update foreground superpixels: 

 P ′ ← (F P ∨ F 2 P ) − BP (13)

ig. 4 (c) shows the identified foreground superpixels according to

ur method. Instead of the general method Eq. (9) , the new valid

oreground weights are calculated as (see Fig. 4 (d)): 

 

f g (P n ) = 0 , ∀ P n / ∈ F P ′ (14)

.3. Saliency optimization 

At last, we adopt the saliency optimization framework of [10] ,

hich integrates our foreground weights with background measure

f [17] , to estimate the accurate and smooth final saliency maps.

ccordingly, a motion-dominated saliency maps from IFOS (we call

t IFOS saliency maps S 
M 

) and an appearance-dominated saliency

aps from IB-RPCA (we call it IB-RPCA saliency maps S 
A 

) are ob-

ained (see Fig. 4 (e)). 

.4. Saliency maps fusion 

The estimated two types of saliency maps complement each

ther. However, simply combining different saliency maps, e.g., tak-

ng the product [9] or average [24] , does not necessarily produce a

etter map, unless we can incorporate them in a proper way. In

his section, a fusion approach is proposed which is implemented

n three steps: 

.4.1. Segmenting the object regions 

We use adaptive thresholding to roughly extract two types of

oreground object regions in each frame in S 
M 

and S 
A 

, respec-

ively: 

 G m 

← S 
M 

> graythresh (S 
M 
) 

F G a ← S 
A 

> graythresh (S 
A ) 

(15) 

here graythresh is the Matlab built-in function according to [18] . 

.4.2. Saliency maps refinement 

After obtained the foreground regions of IFOS and IB-RPCA,

e look for the overlapped regions between them and utilize

he intersection-over-union (IOU) score to refine the IFOS saliency

aps and the IB-RPCA saliency maps. Based on FG m 

and FG a , we

an extract box regions in each of them, i.e., mB = { mB 1 , . . . , mB M 

}
nd aB = { aB 1 , . . . , aB N } . Then, we re-weight either the saliency

ap of IFOS or IB-RPCA in two steps. 

For the IFOS saliency map in one frame, for one box region of

FOS mB m 

∈ mB , if its IOU score–between mB m 

and aB n is higher

han a given threshold T B , i.e., IOU( mB m 

, aB n ) > T B , we combine

B m 

with aB n by selecting the larger box region between them: 

B m 

= 

{
mB m 

if size (mB m 

) > = size (aB n ) 
aB n if size (mB m 

) < size (aB n ) 
(16) 

f its IOU score less than or equal to T B , we do not combine mB m 

ith aB n . We set T = 0 . 75 experimentally in this work. 
B 
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Fig. 5. Comparison of PR curves (left column) and MAE (right column) on datasets SegTrack (top row), SegTrack v2 (middle row) and Ten-Video-Clips (bottom row) of our 

method with the original techniques FOS [11] and B-RPCA [12] . 
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For the IB-RPCA saliency map in one frame, for one box region

of IB-RPCA aB n ∈ aB , if its IOU score is higher than T B , we select the

larger region between aB n and mB m 

in the same way as Eq. (16 ).

If its IOU score is in the range of (0, T B ], we select the smaller box

region between aB n and mB m 

: 

aB n = 

{
aB n if size (aB n ) < = size (mB m 

) 
mB m 

if size (aB n ) > size (mB m 

) 
(17)

We increase the saliency values in the refined box regions of

saliency maps S 
M 

and S 
A 

as follows: 

S 
M 
(i ) = 2 · S 

M 
(i ) 

S 
A 
(i ) = 2 · S 

A 
(i ) 

(18)

where pixel i ∈ mB m 

on the up and i ∈ aB n in the bottom in Eq.

(18 ). 
The two refined saliency maps are normalized linearly to the

ange between 0 and 1. In this way, the object regions that are

etected in both IFOS and IB-RPCA are enhanced (see Fig. 4 (f)). 

.4.3. Fusing complementary saliency maps 

We threshold the two refined saliency maps adaptively as above

gain to find the foreground regions of IFOS maps (i.e., FG m 

) and

B-RPCA maps (i.e., FG a ). Firstly, for the coherent box regions in

ach frame, if anyone of its IOU score is higher than T B , we select

he corresponding larger region. The complete foreground region

an be labeled as the combination of all the refined separate re-

ions: 

B = B 1 L ∪ . . . B kL ∪ . . . B KL , (K ≤ min (M, N)) (19)

 kL = max (aB n , mB m 

) . Secondly, we find other foreground pixels

hat are overlapped in other regions where the IOU scores are
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Fig. 6. Video saliency maps comparison between our method and the FOS, B-RPCA approaches on the SegTrack dataset. 
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Fig. 7. Video saliency maps comparison between our method and the FOS, B-RPCA approaches on the SegTrack v2 and Ten-Video-Clips datasets. 
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Fig. 8. Comparison of PR curves (left column) and MAE (right column) on datasets SegTrack (top row), SegTrack v2 (middle row) and Ten-Video-Clips (bottom row) of our 

method with the state-of-the-art deep learning method ObjFlow [36] . 
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maller than T B : 

P ← (F G m 

· F G a ) > 0 (20)

he final foreground pixels are labelled as: 

 G ← LB ∪ LP (21)

e fuse the motion-dominated saliency map S 
M 

and the

ppearance-dominated saliency map S 
A 

frame by frame to obtain

 spatiotemporal saliency maps of a video (see Fig. 4 (g)): 

T Sacy (i ) = 

{ 

S 
M 
(i ) if i ∈ F G & S 

M 
(i ) > �

max (S 
M 
(i ) , S 

A 
(i )) if i ∈ F G & S 

M 
(i ) ≤ �

S 
M 
(i ) · S 

A 
(i ) if i / ∈ F G 

(22)

e set � = 0 . 8 to select the good quality saliency map S 
M 
(i ) same

s [6] . High quality motion saliency features are more reliable than

ppearance saliency features in a video since it is more robust to

luttered background. 
. Experiments 

To evaluate the performance of the proposed method in video

aliency detection, we now report comparisons from three aspects

n term of commonly-used evaluation metrics on standard publicly

ideo datasets. 

Datasets : Four datasets are utilized for experimenting: SegTrack

32] , SegTrack v2 [33] , Ten-Video-Clips [34] , and UCF-Sport [31] .

he SegTrack dataset was initially produced to evaluate tracking

ethods, and then it is widely used for video segmentation as

ell as video saliency detection. The videos contain diverse chal-

enges, such as similar color between objects and background, non-

igid deformations, and fast camera motion. Li et al. [33] intro-

uced more sequences to construct SegTrack v2. The Ten-Video-

lips dataset includes 10 short video clips of 5–10 s each, and

ne video clip focuses on one primary object in the natural scene.

he UCF-Sports contains 150 realistic videos of sports broadcasts

hat are captured in dynamic and cluttered environments. There
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Fig. 9. Comparison of PR curves (left column) and MAE (right column) on datasets SegTrack (top row), SegTrack v2 (middle row) and Ten-Video-Clips (bottom row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

n  

m

5  

s

 

s  

n  

p  

a  

w  

l  

e  

o  

a  
are 10 action classes, and each video corresponds to one ac-

tion performed by one or several people, which are the salient

objects. 

Evaluation metrics : For performance testing, we first use the

precision-recall curves (PR curves). A curve is produced by nor-

malizing the saliency map in the range of [0, 255], producing bi-

nary masks with a threshold varies from 0 to 255, and compar-

ing the quality of different binary masks against the ground truth

(GT). The curves are then averaged on each video sequence. Preci-

sion defines as the ratio of salient pixels assigned correctly, while

recall denotes the ratio of salient pixel detected. PR curves con-

cern only the case where the object saliency is higher than the

background saliency, and pixels incorrectly assigned as salient de-

grades the performance. Therefore, we further introduce the mean

absolute error (MAE) measure [35] . The MAE computes the average

per-pixel difference between the saliency map and the GT, which

is normalized to [0, 1]. It gives a better estimation of how close

a saliency map is to the GT. To evaluate the performance of our

method in video object segmentation, we utilize the average per-

f

rame pixel error rate [32] for evaluation. Which represents the

umber of mislabelled pixels according to the ground truth seg-

entation. 

.1. Evaluation of fusing different saliency maps from disparate object

ignatures 

To test the effectiveness of our idea – integrating disparate

aliency maps which are derived from complementary object sig-

atures can get a refined spatiotemporal saliency maps, we com-

are the results of our method with the motion-dominated FOS

nd the appearance-dominated B-RPCA which we used in this

ork. In addition, we introduce another state-of-the-art deep

earning based video object detection method–ObjFlow [36] to

valuate that incorporating other saliency maps computed from

ther object signatures, whether the proposed fusion strategy is

vailable and the performance of salient object detection can be

urther improved? 
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Fig. 10. Video saliency maps comparison between our method and the state-of-the-art works on the SegTrack dataset. 
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.1.1. Evaluation of fusing saliency maps from motion-dominated and 

ppearance-dominated object signatures 

In this experiment, the estimated saliency results of FOS [11] , B-

PCA [12] , our modified IFOS and IB-RPCA, as well as the proposed

usion method are compared quantitatively and visually. 

Quantitative evaluation : As shown in Fig. 5 , both the PR cures

nd the MAE values demonstrate that combining disparate saliency

aps properly is valid, and our fusion scheme is effective. Besides,

rom Fig. 5 , we can find that our exploited IFOS and IB-RPCA out-

erform the original FOS and B-RPCA. Different object detection

ethods can tackle different challenges, no approach can handle

ll the problems in the object detection domain till now. (1) in the

egTrack dataset, our saliency based fusion results are much better

han the classical FOS and B-RPCA methods as well as the modified

FOS and IB-RPCA approaches. For example, the MAE value of us is

ignificantly boosted (0.0109 (our) vs. 0.0382 (B-RPCA), 0.0356(IB-

PCA), 0.0181 (FOS) and 0.0170 (IFOS)), where about 78% more ac-

urate than B-RPCA, 69% more accurate than IB-RPCA, 40% more

ccurate than FOS, and 36% more accurate than IFOS. (2) in the

egTrack v2 and Ten-Video-Clips datasets, our method outperforms

he four approaches not as high as in the SegTrack dataset, this

ay because these two datasets contain more challenges, the per-

ormance of B-RPCA is not good at some cases which badly affects

he fused results. Therefore, finding more effective object segmen-

ation methods and fusion strategies are the future tasks. 

Visual evaluation : Fig. 6 shows the video saliency maps of FOS,

-RPCA and our methods on the SegTrack dataset. Our methods

o  
erforms best among them. The shapes of the foreground objects

f us are more approximate to the ground truth than other meth-

ds. This can be also demonstrated in Fig. 7 , where the results are

omputed on the SegTrack v2 and Ten-Video-Clips datasets. In par-

icular, for the birdfall video in Fig. 6 , the small bird can be ac-

urately identified in our method. In other two methods, however,

he bird is heavily violated by the background, it is hard to be dis-

inguished. For the B-RPCA method (the fourth column), the bird

s totally confused with the background. For the bird_of_paradise,

mx, and drift videos in Fig. 7 , the background noise is higherly re-

oved in our method when compared to FOS and B-RPCA. FOS can

ocate the foreground objects in video DO01_055 and VWC102T

ell in the Ten-Video-Clips dataset, but for some parts of the ob-

ect, like the slider, it is poorly discovered. In contrast, due to the

ppropriately fusion, our method is able to highlight these parts

etter. 

.1.2. Evaluation of fusing saliency maps computed from other 

omplementary object signatures 

In this experiment, we integrate the object signatures which

re estimated by the last deep learning-related video segmen-

ation technique into our framework. The object flow (ObjFlow)

ethod [36] is introduced for testing. As shown in Fig. 8 , when

using the video saliency maps of ObjFlow with our video saliency

aps (Ours+ObjFlow), better results are obtained. For example, in

he SegTrack dataset, the ObjFlow method performs worse than

ur method (Ours), when combing the result of ObjFlow with

ur result, the performance of the fused Ours+ObjFlow can also
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Fig. 11. Video saliency maps comparison between our method and the state-of-the-art works on the SegTrack v2 and Ten-Video-Clips datasets. 
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been improved. The accuracy enhancement of MAE of the fused

Ours+ObjFlow method is 9.17% (vs. Ours) and 39.26% (vs. ObjFlow).

In the SegTrack v2, the accuracy of MAE is boosted 2.03% (vs. Ours)

and 9.01% (vs. ObjFlow). In the Ten-Video-Clips dataset, the Ob-

jFlow method performs better than our method, the accuracy gain

of MAE of the fused is Ours+ObjFlow method 9.39% (vs. Ours) and

6.42% (vs. ObjFlow). Due to the ObjFlow method is inefficient, we

do not integrate it into our object signatures based saliency fusion

model. 

5.2. Comparison with other methods 

We compare our spatiotemporal saliency results with five state-

of-the-art image and video saliency methods [5,10,21,37,38] . The

first two methods [10,37] focuses on image saliency detection. Spe-

cially, [10] is closely related to our approach as we apply its fore-

ground connectivity measure to assign weights to foreground su-

perpixels. The other methods aim at video saliency detection. All

the saliency maps are computed by directly running the source

code supplied by the authors. The source code of our work is avail-

able online at. 1 

Quantitative evaluation : Fig. 9 gives quantitative comparisons

between our method and 5 competitive algorithms on 3 well-

known datasets. It demonstrates that the proposed method outper-

forms the others. The PR curves show our method is able to high-

light the complete salient objects more effectively and preserve

salient object boundaries more precisely in most of the cases. The

precision rates of ours are the highest on both SegTrack and Seg-

Track v2 datasets. Specially, in SegTrack v2, our result reaches to

above 0.95. However, on the Ten-Video-Clips dataset, the PR curve

of us is approximate to [10] and worse than [37] . This is due to

the IB-RPCA method is able to detect the foreground objects com-
1 https://github.com/ZhigangTU/Spatiotemporal- Salient- Object- Detection- in- Video 
letely, but it also falsely captures some background noises (see

ig. 4 (b)). Therefore, some background noises are wrongly treated

s foreground proposals. On the other hand, the MAE values of our

pproach are the lowest in all the three tests, which indicates our

aliency maps are closer to the GT. In SegTrack, comparing to the

est result [38] of other methods, the MAE of ours is more than

0% more accurate. 

Visual evaluation : Fig. 10 shows the estimated saliency maps

n SegTrack dataset. The brighter pixels represent higher saliency

robabilities. It can be observed that the proposed method can

ot only detect the foreground salient objects with well-preserved

oundaries but also suppress the background regions much better

han others. The image saliency method [10] , to which our method

s most similar, performs poorly for these videos. Especially, in

irdfall (fast object motion) and monkeydog (camera motion), both

10] and [37] cannot capture the foreground object correctly. One

ain reason is that they lack the motion cue. The spatiotempo-

al model of [5] performs best among others, but its performance

egrades when encountering complex conditions, e.g., the birdfall

small object with fast motion), parachute (illumination changes).

n contrast, the IFOS and the IB-RPCA approaches which we used

o detect object candidates can deal with these challenges, mak-

ng our method much more robust in extracting salient objects in

iverse video contents spatiotemporally. 

Fig. 11 shows the results on SegTrack v2 and Ten-Video-Clips

atasets, and Fig. 12 shows the results on the UCF-Sports dataset.

gain, compared with other methods, our spatiotemporal model

an highlight the salient objects more accurately with complex vi-

ual scenes. The shape of the foreground objects in our method

s better defined. Moreover, the background is better separated in

ur results while most other methods incorrectly detect part of the

ackground as being salient. 

https://github.com/ZhigangTU/Spatiotemporal-Salient-Object-Detection-in-Video
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Fig. 12. Video saliency maps comparison between our method and the state-of-the-art works on the UCF-Sports dataset. 
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. Conclusions 

In this paper, we proposed a spatiotemporal method for salient

bject segmentation in videos. Based on the identified foreground

bject candidates that are computed with some complementary

bject detection algorithms, we introduce a foreground connectiv-

ty method to estimate saliency maps of each channel of the ex-

racted objects. Then, employing our fusion strategy, a more ro-

ust and accurate spatiotemporal saliency maps can be obtained.

his method brings a new research perspective to video saliency

etection: instead of exploiting/improving various features directly

esigned for saliency detection, it is able to use object signatures

rom suitable object segmentation algorithms and build a saliency

odel on top of them. Future work includes exploiting other suit-

ble complementary object signatures and proposing more effec-

ive fusion techniques. 
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